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Finite Difference Maxwell Solver to Study Geometric Shape
Effects on Radar Signature
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The development and application of a finite difference time-domain solver for Maxwell’s equations are
presented. The work described here is the result of a research effort aimed at developing an accurate
and efficient numerical method capable of simulating electromagnetic scattering from three-dimensional
arbitrarily shaped objects to predict their radar cross sections (RCS). The finite difference formulation
is presented and the accuracy of the Maxwell solver is demonstrated for several test cases. The capability
of the Maxwell solver as a design and analysis tool is illustrated through a parametric study that examines
the effects of systematic changes in the shape of aircraft wings on their RCS. The results indicate that
for head-on radar illumination, a significant reduction in the RCS of a wing can be achieved by sweeping
its leading edge and varying its spanwise thickness.

Nomenclature

wave speed, 1/ e

electric-field intensity vector in time domain
electric-field intensity vector in frequency domain
incident wave amplitude

magnetic-field intensity vector in time domain
coordinate transformation Jacobian

wave number, 27/\

unit vector along normal direction

time

Cartesian coordinates

incident wave angle

electric permittivity coefficient

generalized body-fitted coordinates
wavelength

magnetic permeability coefficient

radar cross section
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Subscripts
i, J, k
t =
X, ¥, 2
&, L
0

discrete spatial index

partial differentiation with respect to ¢
partial differentiation with respect to x, y, z
partial differentiation with respect to &, m,
= free-space value

Superscripts
i = incident-field value

n = discrete time index
s = scattered-field value
X, y, Z = components in x, y, z directions
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Introduction

NTIL recently, aerodynamic efficiency has been the main

objective in aircraft design. However, as evidenced by the
introduction of the Lockheed F-117A and the Northrop B-2, it
is clear that in addition to aerodynamic efficiency, today’s air-
craft designers are also concerned with radar cross section
(RCS) reduction to enhance the survivability of military air-
craft. The latter objective of this multidisciplinary design
problem requires accurate and efficient modeling of electro-
magnetic scattering. This requirement, in turn, necessitates
the use of computational electromagnetics (CEM) in aircraft
design.

References 1 and 2 present an excellent overview of the
electromagnetic scattering mechanisms typical for aircraft as
well as the various mathematical models available for RCS
prediction. The conventional approach to modeling electro-
magnetic scattering has been the use of frequency-domain
techniques, namely, high-frequency asymptotic methods (ge-
ometrical optics, physical optics, geometrical theory of dif-
fractions, physical theory of diffractions, etc.),” and the method
of moments.* High-frequency methods are the traditional RCS
prediction techniques used in aircraft design and have until
recently provided the only practical means of analyzing elec-
tromagnetic scattering from electrically large objects (i.e., ob-
jects with characteristic dimensions much larger than the il-
luminating wavelength). However, these relatively simple
methods rely on approximations that neglect small, but often
important, physical features of the scattering object in addition
to many detailed electromagnetic phenomena such as tip and
edge diffractions, interference and polarization effects, creep-
ing waves, etc. Consequently, high-frequency methods provide
only a first-order approximation of the RCS. The method of
moments is similar to the panel method used in aerodynamic
analysis. It is more accurate than high-frequency techniques,
but for problems involving electrically large scattering objects
this method is computationally expensive because of the re-
quired inversion of very large matrices. This is because the
surface patches must be relatively small (of the order of 0.1
—0.2 wavelength) to maintain accuracy. Even with the current
supercomputers, analysis of a complete aircraft using the
method of moments is not feasible for radar frequencies much
higher than 150 MHz. Considering that modern radars operate
at frequencies as high as 20 GHz with corresponding wave-
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lengths as small as 0.015 m, this method tends to be imprac-
tical for use in aircraft design.

As an alternative, researchers have begun to consider com-
putational methods based on field approximation of the time-
domain Maxwell’s equations. This approach offers significant
advantages over the conventional modeling techniques de-
scribed earlier. First, field methods based on finite difference,
finite element, and finite volume discretizations are highly ac-
curate and require significantly less computational effort to
simulate scattering from electrically large objects than the
method of moments. Second, unlike the frequency-domain ap-
proach, the time-domain formulation of Maxwell’s equations
allows the computation of transient and particular responses to
both single-frequency harmonic waves as well as a multifre-
quency single pulse. In addition to these advantages, a major
attractive feature of the field approach is that a large number
of discretization techniques that have been developed and used
extensively in computational fluid dynamics (CFD) can be ap-
plied directly to CEM. This allows a synergistic approach to
solve the multidisciplinary problem of shape design for aero-
dynamic efficiency and low observability.

At the present time, several researchers have developed
time-domain Maxwell solvers based on various field discreti-
zation techniques: finite difference,””” finite volume,*'* and
finite element.'”'> The finite difference scheme proposed by
Yee® in 1966 was the first field method developed for modeling
electromagnetic scattering in the time domain. It uses leap-
frog time integration to integrate Maxwell’s equations on stag-
gered Cartesian grids. This scheme is often referred to as the
FDTD (finite difference time domain) method and has been
applied to analyze a wide range of scattering problems, mainly
by the traditional electromagnetic research community. An ex-
cellent review of these studies is presented in Ref. 6. Because
of the lack of established alternative algorithms, the Yee
scheme’ is currently the most widely used field method for
solving the time-dependent Maxwell’s equations. Despite its
popularity, however, this scheme has several drawbacks. First,
the stair-stepped approximation of curved boundaries resulting
from the use of Cartesian grids often leads to poor modeling
of complex body shapes unless very dense grids are used. This
is because the nonconforming rectangular grid makes it dif-
ficult to accurately impose surface boundary conditions. In
addition, the use of staggered grids requires complicated
programming logic, especially for problems involving com-
plex three-dimensional geometries. These difficulties can be
avoided with the use of nonstaggered numerical schemes in
conjunction with body-fitted curvilinear grids as is commonly
done in CFD. This approach was first applied to CEM by
Shankar et al.® and has been shown to be very effective in
modeling complex scattering problems.

This paper presents an alternative finite difference Maxwell
solver for the numerical simulation of electromagnetic scatter-
ing from three-dimensional arbitrarily shaped objects. The
work described here is an extension of previous research per-
formed by the authors.”™" It represents an effort aimed at
developing an accurate and efficient method for RCS predic-
tion. The current Maxwell solver uses an explicit, second-order
accurate, central-difference scheme to solve the time-depen-
dent Maxwell’s equations on nonstaggered, body-fitted grids.
This formulation offers the advantages of the time-domain
field approach to modeling electromagnetic scattering while
avoiding the drawbacks associated with the popular FDTD
method. In the following sections, a description of the finite
difference formulation and the postprocessing procedures for
transforming field solutions of Maxwell’s equations into RCS
are described. Next, results of two test cases are presented to
illustrate the accuracy of the present Maxwell solver. Finally,
a parametric study showing the effects of shaping on the RCS
of typical aircraft wing configurations is presented. This par-
ametric study illustrates the effectiveness of the Maxwell
solver as an analysis and design tool.

Maxwell’s Equations
In an isotropic and source-free medium with linear proper-
ties, electromagnetic wave propagation is governed by Max-
well’s equations:
Ampere’s law:

(eE), — VX H=0 (D
Faraday’s law:
(WH), + VX E=0 2)

For scattering problems, E and H represent total fields that are
composed of incident and scattered components. Because of
the linearity of Maxwell’s equations, the total fields can be
written as E = E' + E* and H = H' + H’. Noting that the
incident wave always propagates in free space, Eqgs. (1) and
(2) can be rewritten in terms of scattered fields':

Ampere’s law:
(eE"), — V X H" = [(g80 — &)E'],
Faraday’s law:

(WH"), + V X E* = [(no — WH'],
Note that in free space, the total- and scattered-field forms of
Maxwell’s equations are identical.

To facilitate the implementation of numerical schemes, Eqs.
(1) and (2) are rewritten in vector form as follows:

0 +R.+85,+T.=0 3)
where
0 = [¢E", sE”, sE°, pH", nH’, nH'
R=1[0,H —H’ 0, —E% E*]"
S=[-H0,H E%0, —E*]"
T=[H,—-H,0, —E E%, 0]"

In general, surfaces of complex-shaped objects cannot be mod-
eled adequately in the Cartesian coordinate system. In regions
of high curvature, the use of rectangular coordinates results in
stair-stepped representations of smooth surfaces, thus making
it difficult to accurately impose surface boundary conditions.
For electromagnetic scattering applications, particularly RCS
prediction, it is essential that all high-gradient regions along
the surface of the scattering object are properly resolved to
accurately model the scattering physics. This can be achieved
only with the body-fitted curvilinear coordinate system. As a
result of the transformation to a body-fitted curvilinear coor-
dinate system (see Ref. 16 for details), Eq. (3) becomes

Q,+R§+S,]+T§=O 4)
where
cE™ ¢EH — EH®
cE” EH— EH
1 €E* 1 §HY— &H
== N R=- % _. A
=7 uH J &ET— LE
MHy ngx - ngz
WH* £ — £E"
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nZHy - 'f])Hz cZHy - csz

,anz - leHx ctz - Csz

S = l *];Hx - 'an) T = l cny - cxHy
J mET— mE’ J LET - (EY
Mm.E* — m.E* LEY — LEF

nE" = mE” LE” — LET

Here, £ = £(x, ¥, 2) and m = m(x, y, z) denote the circumferential
coordinates tangent to the body, and { = {(x, y, z) denotes the
radial coordinate. The transformation metrics and Jacobian are
defined as

Ee=Jlyaze = yizal Me=Jyze = yezd L= J[yeZa = Yozl
& =Jlxzy — x0z] my=Jlxeze — xzel L= JIxgze — Xz
E=Jxyye = xyal mo=Jlxye — xeyd L= Iy, — Xy
X Yn Ze)

= Uxeyaze + XyiZe + X(VeZo = XeYiZa = XqYele =

The vectors R, S, and T can be written as functions of vector
Q as follows:

R=AQ S=BQ T=CQ (5)
where
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Equation (4) represents a system of hyperbolic equations
that can be solved numerically using any one of the numerous
CFD-based finite difference schemes. The present Maxwell
solver uses the classical Lax —Wendroff scheme. This explicit
scheme is second-order accurate in both time and space, and
it does not require the computational grid to be staggered. Al-
though implicit schemes would allow the use of larger time
steps, they also produce more dispersion or phase error than
explicit schemes."> For problems involving electromagnetic-
wave propagation, it is critical that the phase error is kept to
a minimum to maintain accuracy.

Lax—Wendroff Scheme

The Lax —Wendroff algorithm for Eq. (4) is derived starting
from the Taylor-series expansion of vector Q about discrete
point i, j, k and time level n:

Qi = Qi + AQ, + (Ar/2)Q, + O(Ar) (6)
The second-order time derivative is retained to achieve second-
order accuracy and to provide coupling between adjacent grid
points. Using Eq. (4), the time derivatives on the right-hand

side (RHS) of Eq. (6) are replaced with spatial derivatives. For
the first-order time derivative, this is trivial:

0. =-R:+ S, + T (7
For the second-order time derivative, this can be done by first

taking the derivative of Eq. (7) with respect to time and then
replacing R, S, and T with Eq. (5). The result is

Qn = _[(AQ1)§ + (Bgr)n + (CQ1)§] (8)
Note that the Jacobian matrices A, B, and C are independent
of time, but are functions of & m, and {. The next step is to
replace the time derivatives on the RHS of Eq. (8) with Eq.
(7):
Q.= (AF), + (BF), + (CF), 9)
where

F=R.+ 8, + T,

The time derivatives in Eq. (6) can now be eliminated using
Egs. (7) and (9):

0754 =0 — AtF + (A’12)[(AF ), + (BF), + (CF)] (10)
The final form of the Lax—Wendroff scheme for Maxwell’s

equations is obtained by replacing all spatial derivatives in Eq.
(10) with central differences.
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Boundary Conditions

Numerical simulation of electromagnetic scattering entails
solving the discrete Maxwell’s equations on a computational
grid that covers the surface of the scattering object and extends
to some finite distance away from the scattering object where
it is terminated. The truncated computational domain is nec-
essary because of the limited memory available on computers
used to perform the simulation. At the inner boundary that
conforms to the scattering surface, reflecting boundary condi-
tions are imposed to numerically simulate the reflection and
transmission of impinging electromagnetic waves. At the outer
boundary, an absorbing boundary condition is specified to al-
low scattered waves to propagate out of the computational do-
main.

Absorbing Boundary Condition

A one-dimensional characteristic boundary condition'’ is im-
posed at the outer boundary:

W, + ¢c(W,/R) =0 (11)

where W = [EY, E°, E*, HY, H”, H|", c = 1/\/ep is the wave
speed, { is the coordinate normal to the outer boundary, and
R is the radial distance along the { direction. This absorbing
boundary condition assumes that scattered waves propagate in
the direction normal to the outer boundary as they leave the
computational domain. In reality, scattered waves can propa-
gate in any arbitrary direction as they approach the outer
boundary and, consequently, Eq. (11) allows scattered waves
to reflect from the outer boundary back into the computational
domain. However, since scattered waves decay by a factor of
1/\/E and 1/R in two and three dimensions, respectively, as
they propagate away from the scattering object,'® the amount
of reflection can be minimized by placing the outer boundary
sufficiently far away from the scattering object.

Reflecting Boundary Conditions

The present study considers only scattering from perfect
electric conductors that reflect, but do not transmit, impinging
electromagnetic waves. The surface boundary conditions for
this case are'

AXE=0 (12)
i-H=0 (13)

Equations (12) and (13) imply that the tangential components
of the total electric field intensity and the normal component
of the total magnetic field intensity vanish at the body.

In general, it is more advantageous to solve Maxwell’s equa-
tions in terms of the scattered-field formulation. In the total-
field formulation, the incident wave must be propagated nu-
merically through the computational domain. Because of the
dispersive nature of most numerical schemes, waves become
distorted as they are numerically propagated through a non-
uniform, curvilinear grid. To minimize dispersion error, the
present Maxwell solver was developed using the scattered-field
formulation in which the incident electric and magnetic fields
are propagated analytically and only the scattered fields are
computed. This approach has the additional advantage in that
the scattered field, which has a lower amplitude than the total
field, can be more easily absorbed by the absorbing boundary
condition, thus resulting in less reflection at the outer bound-
ary. To enforce the total-field reflecting boundary conditions
(12) and (13), total fields are computed at the body and the
incident fields, which are known analytically, and are then sub-
tracted out to obtain the scattered fields before the solution is
advanced to the next time level. Therefore, in the scattered-
field formulation, the effects of the incident wave are intro-

duced through the reflecting boundary conditions. The scatter-
ing object in this case acts as a radiating body.

RCS

RCS is a measure of the intensity of the scattered electro-
magnetic waves with respect to the impinging signal. When
the radar transmitter and receiver are located at the same lo-
cation, the observed RCS is known as backscatter or mono-
static RCS. When the directions of illumination and observa-
tion are not collocated, the resulting RCS is called bistatic
RCS. The bistatic RCS is defined as

E"SR 2
o = lim 41'r|R|2—| ~(,Z|
R |E’]

where the vector quantities E* and E’ represent the complex
Fourier components of the scattered and incident electric field
intensities, respectively, and R denotes the vector from the
scattering object to the observation point located in free space.
Note that RCS is defined in the frequency domain. Therefore,
the computed solution of the time-domain Maxwell’s equations
must be transformed into frequency domain to calculate RCS.
In the present study, time-dependent solutions are saved over
one complete wave cycle after time-harmonic steady state has
been reached. The time-domain solutions are then transformed
into frequency domain using fast Fourier transform. In addi-
tion, note that the scattered electric field intensity is a function
of R and RCS is defined for R approaching infinity. Since the
computational domain is finite, only scattered fields near the
scattering object are computed. This so-called near-field solu-
tion must be transformed to the far-field solution before
RCS can be computed. Using Green’s function transform, the
bistatic RCS becomes™

o = (1/4m)|S|?

where

—_

S:mf[(ﬁ-ﬁ)lhr(ﬁxﬁ)x/%

+ jit X (V X E)le ™ dC

e

Here, C represents the integration path around the scattering
object, k = kR/|R|, j = \/—1 is the complex number, and r’'
represents the vector from the origin of the coordinate system
to a point on C.

CEM Simulation

In the present study, only scatterings from perfect electric
conductors in free space are simulated. The scattered-field for-
mulation is used with &, and @, normalized to unity. Each
simulation starts from zero scattered fields everywhere and is
run until the scattered fields reach time-harmonic steady state.
To minimize dissipation and dispersion errors, a time step cor-
responding to Courant—Friedrich—Lewy (CFL) = 1 (based on
the smallest grid spacing) is used in all simulations. Incident
electromagnetic waves are modeled as sinusoidal plane waves
defined as

E* = E, sin[k(x cos B + y sin B — co)]

3 E* sin B B E* cos B

KoCo KoCo

H>

One of the most important issues in numerical simulation is
grid resolution. In CEM, proper grid resolution depends not
only on the body dimensions, but also on the wavelength, since
electromagnetic waves must be properly resolved. Otherwise
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numerical errors will cause propagating waves to become se-
verely distorted. In the course of validating the present Max-
well solver, it was found that a grid resolution of at least 10
grid points per wavelength is required to accurately resolve a
wave. For problems involving wave scattering from a single
object, this grid resolution is necessary only on and near the
body, where the scattering occurs, provided the scattered-field
formulation is used. If the total-field formulation is used,
proper grid resolution must be maintained over the entire re-
gion required to propagate the incident wave to the scattering
object. Similarly, when multiple scattering between several ob-
jects are involved, the computational grid must be properly
resolved in regions between the scattering objects to accurately
propagate scattered waves from one object to another, regard-
less of which field formulation is used.

Code Validation

The present Maxwell solver has been validated for two test
cases: 1) the standard sphere and 2) the more realistic aircraft
wing. The results are presented to illustrate the accuracy of the
solver.

Sphere

The first test case is a sphere with an electrical size of ka =
3.5 where a is the sphere radius. The circumference of the
sphere is 3.5\, where N = m/3.5. The sphere is illuminated by
a horizontally polarized plane wave propagating along the pos-
itive x direction as follows:

Ay

F4

The computational grid for this case contains 61 and 31
points in the two circumferential directions £ and m, respec-
tively, and 40 points in the radial or { direction for a total of
61 X 31 X 40 points. The outer grid boundary is located
approximately 3\ from the sphere surface. The minimum grid
resolution on the surface is roughly 17 points per wavelength.
In the radial direction, the grid is stretched with a resolution
of approximately 22 points per wavelength next to the surface
and roughly 9 points per wavelength at the outer boundary. A
close-up view of the surface and volume grids is shown in Fig.

Fig.1 Close-up view of computational grid for the sphere.
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Fig. 2 Bistatic RCS of the sphere in the a) xz and b) xy planes
(ka = 3.5).

1. The scattering is simulated for five wave cycles with field
variables collected in the fifth cycle for RCS calculation.

Before results are presented for this test case, it is necessary
to discuss the treatment of the pole singularity. The pole sin-
gularity arises from the fact that grid points at the pole of the
sphere collapse onto a single point (see Fig. 1), resulting in
zero volume. As a result, the transformation Jacobian, which
represents the inverse of the volume, becomes infinite at the
pole. The infinite Jacobian presents a problem in that it causes
variables in the transformed Maxwell’s equations [see Eq. (4)]
to be undefined at the pole. This singularity occurs all along
the pole axis that extends from the surface of the sphere to the
outer grid boundary. The current Maxwell solver treats this
problem by not solving the governing equations along the pole
axis. Field variables along the pole axis are obtained by av-
eraging values from surrounding grid points on the { = const
surface.

The computed bistatic RCS of the sphere in the xz and xy
planes are compared against the exact solutions® in Fig. 2.
Here, viewing angles are measured counterclockwise from the
positive x axis. Thus, the 0-/360-deg viewing angle corre-
sponds to forward scattering, whereas the 180-deg viewing
angle indicates backscattering. Overall, the computed RCS in
the two viewing planes are in excellent agreement with the
exact solutions.
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Aircraft Wing

The second test case is a unswept rectangular wing with a
uniform spanwise thickness distribution (except near the col-
lapsed tip). The wing is composed of the NACA 0012 airfoil
sections. It has a chord length of ¢ = 1.0 and a wing span of
b = 2.0. The wing is illuminated head-on (0-deg incidence) by
a horizontally polarized plane wave with a wavelength of A =
0.5¢ as follows:

I c=10

Yz

An O-H topology grid is used to discretize the computa-
tional domain. The surface grid consists of 59 airfoil sections
in the spanwise direction (49 on the wing) with 101 points
around each airfoil section. The volume grid is created by gen-
erating an O grid around each airfoil section and connecting
it to its spanwise neighbor to form the O —H grid. The resulting
grid contains 41 points in the radial direction for a total of 101
X 59 X 41 points with the outer boundary located approxi-
mately 2\ from the wing. The grid has a resolution of at least
10 points per wavelength on and near the wing. A close-up
view of the surface and volume grids is shown in Fig. 3. Note
that the airfoil section at the wingtip is collapsed to zero thick-
ness. This collapsed profile is maintained outboard of the
wingtip along the spanwise direction with geometric stretching
to the outer boundary. In the current simulation, the governing
equations are not solved on the collapsed plane between the
wingtip and outer boundary. Instead, the solution on this plane
is obtained by averaging values from grid points located di-
rectly above and below the collapsed plane. Note that the en-
tire wing has to be simulated since some field components are
180 deg out of phase about the spanwise symmetry plane.

The scattering is simulated for five wave cycles with field
variables collected in the fifth cycle for RCS analysis. The
computed bistatic RCS in the xy plane is shown in Fig. 4a

Fig. 3 Close-up view of computational grid for the rectangular
wing.
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Fig. 4 Bistatic RCS of the rectangular wing in the a) xy and b)
xz planes.

along with the scaled method of moments solution for the
NACA 0012 airfoil. In general, the RCS of an infinitely long
cylinder can be scaled to approximate the RCS of a cylinder
of length L with the same cross-sectional shape using the fol-
lowing scaling factor™:

O = [2LYN] 050

In the case of aircraft wings, this equation gives a fairly ac-
curate approximation of the RCS for unswept rectangular
wings based on the RCS of an infinite wing having the same
airfoil section (i.e., the RCS of the airfoil itself). Note that this
scaling relation is invalid if the wing is swept or if the airfoil
shape/dimension changes along the spanwise direction. As
shown in Fig. 3a, the computed bistatic RCS of the three-
dimensional wing is in good agreement with the scaled
method-of-moments solution for the two-dimensional airfoil.
The computed bistatic RCS in the xz plane is shown in Fig.
4b. Again, viewing angles are measured counterclockwise
from the positive x axis. Note that for military aircraft, the
bistatic RCS in the xy plane is the most informative since it
contains simultaneously the RCS in the four most threatening
directions: rear, front, above, and below, which correspond to
viewing angles of 0/360, 180, 90, and 270 deg, respectively.

Parametric Study

In the previous section, the accuracy of the Maxwell solver
was demonstrated for two arbitrarily shaped objects. In this
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section, the capability of the Maxwell solver as a design and
analysis tool is demonstrated by applying the solver to analyze
the observability of various aircraft wing configurations. Spe-
cifically, the effects of systematic changes in the shape of air-
craft wings on the RCS based on head-on radar illumination
are examined. As noted earlier, knowledge of the bistatic RCS
in the xy plane is more critical than in the other two viewing
planes and, consequently, only the effects of shape changes on
the RCS in the xy plane are considered. All simulations are
performed using the same grid parameters and incident-wave
conditions as those described in the previous section.

Effect of Spanwise Thickness Distribution

In this study, the effect of spanwise thickness distribution
on the RCS of aircraft wings is examined. The study compares
the RCS of two wings: one with a uniform thickness distri-
bution along the spanwise direction (except near the collapsed
tip) and one with a variable spanwise thickness distribution.
The unswept rectangular wing described in the previous sec-
tion is used as the baseline wing. This baseline wing is mod-
ified by linearly decreasing its spanwise thickness between the
root and tip such that the maximum thickness near the col-
lapsed tip is half the maximum thickness at the root (i.e., a
2:1 root-to-tip thickness ratio).

The computed bistatic RCS of the baseline and modified
wings are compared in Fig. 5. Note that only a slightreduction
in the RCS has been achieved in and around the backscattering
direction (180-deg viewing angle) by varying the spanwise
thickness. Of course, more reduction in the RCS can be at-
tained by further decreasing the wing thickness between the
root and tip or by simply using a thinner airfoil section for the
entire wing as suggested by the result of a previous parametric
study of airfoils.”> However, because of possible design con-
straints on the aerodynamic performance, structural integrity,
and fuel-carrying capacity of the wing, these options may not
be viable.

Effect of Wing Sweep

This study examines the effect of sweeping on the observ-
ability of aircraft wings by comparing the RCS of a rectangular
wing with and without sweep. To maintain the same wing span
between the unswept and swept configurations, the wing is
actually not swept, but is sheared by an angle 0 as illustrated
as follows:

Here the term swept is used loosely to describe the sheared
configuration. Again, the unswept, rectangular wing described
in the code validation section is used as the baseline configu-
ration. The computed bistatic RCS of the wing with 0-, 5-, and
10-deg sweeps are compared in Fig. 6. These results show that
a significant reduction of the RCS in and around the back-
scattering direction can be achieved with only a small amount
of sweep. Thus, compared to varying the spanwise thickness,
sweeping the wing is a better method for reducing the radar
signature, since a large reduction in the RCS can be attained
without requiring any changes to the wing basic dimensions.
By maintaining the basic dimensions of the unswept wing, the
original requirements on the aerodynamic performance, struc-
tural integrity, and fuel-carrying capacity of the wing can still
be satisfied. Note that further reduction in the RCS can be
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Fig. 5 Effect of spanwise thickness on the bistatic RCS.
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Fig. 6 Effect of wing sweep on the bistatic RCS.

achieved as shown in Fig. 6 by also varying the spanwise
thickness of the wing in addition to the use of wing sweep.

Finally, it should be noted that sweeping a wing will in-
crease its bistatic RCS in the spanwise direction since the in-
cident wave will be deflected more toward the side. However,
the RCS of a wing or any other aircraft configurations cannot
be reduced for all possible threat directions except through the
use of radar-absorbing materials or coatings. Thus, a tradeoff
decision has to be made and a typical low-observable config-
uration can be designed to minimize only the threat in a pre-
selected direction. For head-on radar illumination, the use of
wing sweep will only reduce the return signal toward the front
of the wing.

Conclusions

The development and application of a finite difference al-
gorithm for the numerical simulation of electromagnetic scat-
tering have been presented. The current algorithm solves the
time-dependent Maxwell’s equations on nonstaggered, body-
fitted grids using the explicit, second-order-accurate Lax—
Wendroff scheme that has been developed and used exten-
sively in CFD. The time-domain formulation of Maxwell’s
equations allows the computation of transient and particular
responses to both single-frequency harmonic waves as well as
a multifrequency single pulse. The use of body-fitted grids in
combination with the Lax—Wendroff scheme results in an ac-
curate and efficient numerical algorithm capable of simulating
electromagnetic scattering from electrically large objects while
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avoiding the drawbacks associated with the use of staggered
Cartesian grids employed by the traditional FDTD method. It
also allows a synergistic approach to solve the multidiscipli-
nary problem of shape design for aerodynamic efficiency and
low observability.

Results of the validation study show that the current Max-
well solver is very accurate in predicting the bistatic RCS of
arbitrarily shaped objects. The capability of the Maxwell solver
as a design and analysis tool has also been demonstrated
through a simple parametric study that examined the effects of
systematic changes in the shapes of aircraft wings on their
RCS. The results indicate that for head-on radar illumination,
a significant reduction in the RCS of a wing can be achieved
by sweeping its leading edge and varying its spanwise thick-
ness. Although designers could deduce these results intuitively,
the current Maxwell solver allows them to quantify the effects
of shaping on the RCS of an aircraft configuration and to bal-
ance aircraft observability against other design criteria such as
aerodynamic performance, structural integrity, and fuel-carry-
ing capacity.
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